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Exact solutions to magnetized plasma flow
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Exact analytic solutions for steady-state magnetized plasma flMPF) using ideal
magnetohydrodynamics formalism are presented. Several cases are considered. When plasma flow
is included, a finite plasma pressure gradi€éptcan be maintained in a force-free stateB=0 by

the velocity gradient. Both incompressible and compressible MPF examples are discussed for a
Taylor-state spheromék field. A new magnetized nozzle solution is given for compressible plasma
whenU|B. Transition from a magnetized nozzle to a magnetic nozzle is possible whénfiblel

is strong enough. No physical nozzle would be needed in the magnetic nozzle case. Diverging-,
drum- and nozzle-shaped MPF solutions wh&nB are also given. The electric field is needed to
balance théJX B term in Ohm’s law. The electric field can be generated in the laboratory with the
proposed conducting electrodes. If such electric fields also exist in stars and galaxies, such as
through a dynamo process, then these solutions can be candidates to explain single and double jets.
[DOI: 10.1063/1.1343505

I. INTRODUCTION field will be derived. In Sec. Ill, based on known solutions,
) ) o force-free MPF solutions with finite pressure are given. Ap-
High-speed plasma wind and cosmic jets are well-knowryjication of the solutions to a special force-free magnetic
phenomena in the univerdé.In fusion experiments, when state—a Taylor-state spheromd&®* is discussed for both
external energies and/or momentum are used to drive thﬁlcompressible and compressible flows.

plasma, plasma motion, such as rqta%i_(?[?”d flow along The general compressible MPF formalism was discussed
the magnetic field8,is observed routinely-® These diverse in detail by Morozov and Solove¥? Transonic MPF with

phenomena are examples of plasma flow within a magnetig,nsjational symmetry along theaxis were studied by Lif-
field: the magnetized plasma floWIPF). The MPF can be  ghit; and Goedbloe®f, and works cited therein. We demon-
described by the magnetohydrodynamidHD) equations  grate the existence of a new axisymmetric magnetized
with the plasm'a momentum term included. nozzle solution in Sec. IV, and discuss the transition of a
~The MPF is also used to address technology concerngyagnetized nozzle to a magnetic nozzle. The distinction be-
Using a magnetic field instead of a physical boundary tQyeen a magnetized nozzle and a magnetic nozzle is that the
guide the plasma fluid flow in a converging—diverging Con-fomer relies on a material boundary—the physical nozzle in
figuration leads to the concept of a “magnetic nozzI€™ 0 conventional sense—to accelerate plasma, while the lat-
Magngtlcally nozzled plasma flow is more deswa_ble over thgg, solely relies on the converging—diverging magnetic field
materially nozzled flow because of the potentially longeri, ~onfine the plasma flow. One distinction between a mag-
lifetime and more controllable operation in the first case.qtized nozzle and a conventional nozzle is that the former
Magngtlc nozzle; certainly can be used for propulsion an%as a magnetic field within the flow. Another distinction be-
material prqcessmbz. . . . tween a magnetized nozzle and a conventional nozzle is that
Th1%9lr5et|cal studies of the MPF began in the midy,e conyentional nozzle usually operates with neutral gas,
1950s.”"" Approximate axially symmetric steady-staté S0- 504 4 magnetized nozzle operates most effectively using
lutions were obtained by Morozov and SoloV&Exact in- plasmas, or ionized gases.
compressible solutions were given for a generalized symme- | gec. v, using the mathematical formalism introduced
try with one ignorable spatial coordinate. Special i gec. |1, new MPF solutions with purely poloidal flofthe
aX|symmet.r|c, nonsteady MPF was studied by Col&lh MPF does not cross the-z plane and purely toroidal mag-
general, without a certain type of symmetry, the MPF prob+,qi: field are obtained. Realization of the flow in laboratory
lem is too complicated. Computational methods have t0 bgttings using conducting boundaries are emphasized. Three

usedlgvzo i N . . .
¥ specific examples are given. The analytic solutions derived

We have obtained several exact solutions to axisymmety o may also be used to bench mark new computational
ric MPF under various assumptions. Section I briefly pre-¢,qes.

sents the formulation of axisymmetric MPF. The formalism
introduced will be used in Sec. Il B, where purely rotating
MPF will be discussed, and in Sec. V, where a class of MPRl. PROBLEM FORMULATION

solutions with purely poloidal flow and toroidal magnetic Steady-state MHD equations with flow have been stud-
ied in both fusion and astrophysics contexts. ldeal incom-
aElectronic mail: zwang@!anl.gov pressible plasma flow was studied by many autR6r&
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Ideal MHD flow equations were also derived by several au-
thors independentl§?*3~3¢The steady-state ideal MPF can V
be described by the ideal MHD equations with the plasma
fluid momentum term included. These equations are Fara-

2
1
—+w) - P(A;p]gv&prvr)

7 H 1
day’s law in steady state S Z(A*\pvqu. V1), 9)
r
V XE=0, 1) Hop
1
Ampere’s law [&T]= M—[\I’,I]. (10
0
VXB=uo, 2 Here, the equation of state is assumed to be of the form
divergence-free law for magnetic field VW_: Vp/p with w usuglly known as the-enthalpy. The gen-
eralized operatoAE‘p] with kernelp is defined as
V-B=0, ()
. . VéE, 2 9¢
ideal Ohm’s law AjE=V- p | pror (12)
E+UXB=0, 4

lll. FORCE-FREE MPF

steady-state single-fluid momentum equation ) .
Force-free states are defined as plasma states within

pU-VU=—-Vp+JIXB, (5)  which the electromagnetic forc&x B vanishes. Force-free
conditions are believed widely applicable in astrophysical
environments because forces other than electromagnetic are
V.- (pU)=0, (6)  comparatively much smaller. Force-free states can also ap-
pear within a conducting boundary, a so-called flux con-
wherep is the mass density) represents the flow velocity, server, in a laboratory environment. A typical example is a
and the other symbols have their usual meanings. By assumpelaxed spheromak state, also known as a Taylor tate.
ing axisymmetry in cylindrical coordinates (6, z), 6 can  force-free equilibrium with mass flow and finite pressure ex-
be ignored. (The symmetry need not be chosen to bejsts for a constant density.>® Here, another type of force-
cylindrical ) From Faraday’s law, Eq1), the electric field  free MPF with a finite-pressure profile is given. Assufe
can be expressed as the gradient of a poteiia-V®. =0 within a plasma. From the ideal Ohm’s la{), one
The azimuthal electric fiel&, is zero from axisymmetry.  optainsUx B=0. That is, in a ideal MPF within which the
For axisymmetric configurations, the magnetic field canglectric field vanishes, the flow has to align with the mag-
be generally expressed in terms of two scalar functi¥hs netic field. This is also the known as the “frozen-in law.” A

and|, wheré’ B=V¥ XV 0+1V6. SinceB-V¥=0, V= general incompressible solutidh- U=0 was worked out by
constant defines a magnetic flux surface. Similarly, from therataronis and Moné&° where

continuity equation, Eq(6), the velocityU can be expressed

and the steady-state continuity equation

in terms of scalar functiong andI” asU= (1/p) VEXV 6 U= B (12
+I'V 0, whereé= constant defines a plasma-flow surface, N W’

or so-called streamline. ) o ]
Introduction of the functionsb, W, I, & andT’ modify for B-aligned plasma flow and a finite pressure sustained by

the ideal MHD equation set in the following ways: Equationsthe flow, and

(1), (2), (3), and (6) are satisfied automatically. Equations pU?

(1)—(6) reduce to Eq(4), the Ohm’s law, and Eq(5), the p+ ——=constant. (13

momentum equation. This set of equations is not complete

without inclusion of an equation of state relating presgure From the incompressible aritalignedU conditions, it can

and mass density. be shown thatp is a function of flux surfaces onlyp
We can write a general form of the remaining equations=p(¥). This solution was first derived for théxB+#0

by defining the Poisson’s bracket for any two quantiﬁbs case‘fo The well-known solution for a Constant-density

andl as[W,1]= (a¥/ar)(dlldz) —(llor)(o¥/3z). Then, Pplasma with flow along a magnetic field due to

the radial and axial Ohm’s laws can be expressed as Chandrasekhafis a special case. We now apply the solution
of Egs.(12) and(13) to the force-free case, and point out the

r I solution implies a finite plasma pressure with flow. In addi-
—Vo+ r—ZV\If— vazo' (7 tion, we will find out that the flow-supported pressure gradi-
ent is usually different from the magnetic flux gradient.
1 Therefore, equal-pressure surfaces do not coincide with the
;[qf,g]zo_ (8 magnetic flux surfaces.

The momentum balance, E¢), becomes two equations, A Incompressible MPF with finite pressure

one for axial momentum and the second a description of Equations(12) and(13) give a finite-pressure profile for
conservation of angular momentum any force-free state,
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FIG. 1. Cross section of the magnetic flux surfaces and equal pressumelG. 2. Cross section of the magnetic flux surfaces and equal-pressure sur-
surfaces for a Taylor-state spheromak with incompressible flow parallel tdaces for a Taylor-state spheromak with purely toroidal rotation of com-

the magnetic fieldJ|IB. pressible flow.
B2 B3 )
—  4p=_92 U r
2100 PT 2p, POl (14) V|5 +w|-Svr-o. (16)
r

where By and py are integration constants that have the

magnetic-field unit and pressure unit, respectively. This solt can be proven for nontrival solutions, that #,#W¥(r),
lution implies that the pressure distribution is independent ofvhich requires

the density distribution. The shapes of equal-pressure sur-

faces are shown in Fig. 1 using a spheromak equilibrium Ezw (17)
magnetic field satisfying¥ XxB=AB and constani. The r2 0

boundary condition was chosen to be a perfectly conducting ) _ o

cylinder with radiusr, and heights extending from Z, to yvhere g is a constant angular velocity. Thls_ is the law of
Z,. The pressure and magnetic surfaces are no longer coifsorotation first discovered by Ferratband discussed by
cident with each other. There is a significant displacemenfany authors later off.In general.w, may be a function of
between the axis of these surfaces. The displacement b1 magnetic flux surface. However, in the force-free case
tween the magnetic and pressure surfaces also exists fordiscussed here, only constamp throughout the plasma is
different kind of plasma flo® Assume that the ideal gas allowed for¥ =W (r). Since we assumegl=p(p) here, we
law p= pkgT/M is valid for the present case, whéegis the ~ €an use the usual adiabatic or isothermal equation of state of
Boltzmann constan is the plasma temperature, amlis ~ the form

the ion mass. Since the plasma density is a function of mag- y

netic flux surfaces, and the plasma pressure is not a function P _Pr (18)

of the flux surface, the plasma temperatiins generally not Po pg’

a function of the flux surface. ) ) ) .
with y=5/3 for the adiabatic case and=1 for the isother-

mal case. The pressure profile is given by

B. Compressible MPF with finite pressure 2.2 2.2
Y P @™ ¥y Po wglp
A rotation-only force-free MPF is defined by a flow with y—=1p 2  y—1p, 2 ° (19)
vanishing poloidal flow componert=0 and solely with fi-
nite toroidal rotational componeht=0. Ohm’s law, Eq(8),  for y#1, and
is satisfied identically. Ohm’s law, Eq7), implies that® W2r2— w22
= 0 0'0
(I)(\P), and p:po eX%Z ’ (20)
Dy=—, (19  for y=1, the isothermal case. In either case, both the pres-

' sure and the density are functions of radius only. An example

where®d, stands for the first-order differentiation & with of the equal-pressure surfaces is shown together with a
respect to¥. Using the force-free condition, the only non- Taylor-state magnetic equilibrium in Fig. 2. Again, it is no-
trivial equation left is the momentum E¢P) ticeable that the pressure and magnetic surfaces are no longer
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coincident with each other. The difference from that of thebeneficial to lower the heat load on the nozzle walls due to
incompressible situation is that the equal-pressure surfacese magnetic confinement of charged particles.
are open ended.

B. Magnetic nozzle

A magnetic nozzle is defined as a “nozzle” that uses the
magnetic field instead of a physical bound&ymechanical

continuity equation, Eq.(6), Bernoulli's equationU?/2  Solution is possible if the magnetic field is shaped in a con-
+/(dp/p) = constant and the equation of state, Etg), ~ ventional converging—diverging nozzle configuration, with
together, when integrated over streamlines in a flow regio?lasma flow along the magnetic field. When the magnetic
—1]dU/U = dA/A, whereC.=\/yp/p is the sound speed. conventional physical boundary is no longer needed in a
The Hugonoit equation leads to a nozzle type of solution fofmagnetized nozzle and we, therefore, achieve the magnetic
the flow only when the gas is compressible. Below, we demN0Zzle operation. One requirement on the strength of the
onstrate one kind of magnetized nozzle solution for the MPFMagnetic field is that the ion gyroradius be much less than
We will consider systems of ionized gas—plasma flow, nothe smallest dimension of the magnetic nozzle system. How-
neutral gas flow, so that the magnetic field can be effectivelfVer, due to the fact that an electron gyroradius is much less
confining to ions and electrons. Substantial external energynan an ion gyroradius, the charge separation between ions
either in the form of dc electric energy, rf wave energy, orand electrons could induce large electric fields that would
any other form, is needed to maintain a gas in a plasma statgYentually prevent the charge separation. In other words, am-
In another scenario, once a plasma is created upstream of tRPolar diffusion will be set up in the steady state. Therefore,
nozzle, if the plasma transit time through the nozzle systent® €xpect that the ion gyroradius is much less than the small-
is much less than the electron—ion recombination time, theSt d|men§|0n of the magnetic nozzle system is too strong a
no extra energy is needed along the flow to maintain statement? For the magnetic field to be effectively confin-

IV. NOZZLE-TYPE MPF

plasma staté&? ing, the particle diffusion time across the magnetic field must
_ be much greater than the transit time along the magnetic
A. Magnetized nozzle field, that is,

In this subsection, we identify the magnetized compress- R2 L,
ible steady flow conditions so that the equation of state, Eq. B> o
(18), and Bernoulli's equatiory?/2+ [ (dp/p) = constant s
along the streamlines are still valid. Assume the flow isin which RandL, are characteristic dimensions in the radial
magnetic-field alignedUlIB. U dotted into the momentum and axial directions, respectiveli2 is the averaged cross-

(23

equation, Eq(5), gives field diffusion coefficient, andC; is the sound speed at the
U2 dp nozzle throat. In an ideal case, one can use the classical
Uu.v _+f_):o' (21  diffusion coefficientD =r2v;,, Wherer;.=\2mT,/eB, is
2 p the singly charged ion gyroradius and

which means Bernoulli's equation is still valid along the =nee*In A/3sg\/(277)3miTeE. while all the symbols have
streamlines. To satisfy the continuity equation and thetheir usual meanings in plasma physiesjs the electron
divergence-free condition for the magnetic field, one solutiorcharge,n, is the plasma density, etc. Equati@8) implies
is that (R?/L,) C>2€?In AI3e3\[1/(27)°m T, ] (p/B2), T,=T,
B=X.oU (22) i; a characteristic_temperaturBO is an average ma_gneFic
0P field, andp=n.m; is the mass density. Since the diffusion
with Ao a constant. Therefore, E@22), together with the mechanism depends on many aspects of the problem, such as
continuity equation, Bernoulli's equation, and the adiabaticthe initial spatial distribution of the injection plasma in the
equation of state, form a complete set of solutions for magupstream region of the nozzle and the boundary conditions,
netized nozzles. using the classical diffusion coefficient here only serves to
In the special case of vanishing internal plasma currentdemonstrate the concegifsin real experiments, it should not
J=0, one further has that the mass density gradient is alonge surprising when other diffusion forms of the coefficient
the flow VpxXB=0. The continuity Eq(6); the equation of work better. An additional constraint is that the plasma must
state, Eq(18); and Bernoulli’'s equation govern the physical be collisional enouglithe density high enougtior the fluid
boundary that forms a nozzle-shaped object. Due to the alapproximation to be valid. Otherwise, if the plasma is colli-
sence of the electric current within the plasma, the magnetisionless both along and across the magnetic field, a magnetic
field described is entirely produced by external currentnozzle turns into a mirror-type magnetic-confinement device,
sources, such as the electric current flowing in the conductwhere the total particle energy and the magnetic momentum
ing coils. Also, due to the absence of the electric currenfire conserved for each ion. Since the cross-field diffusion
within the plasma, there is no acceleration effect from theiime is much greater than the transit time along the magnetic
electromagnetic force in this type of magnetized nozzle. Thdield, the least requirement on the plasma collisionality is
inclusion of a background magnetic field, however, may behat the plasma must be collisional across the magnetic field
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(radial diffusion time is much greater than the collision ime in which, &, stands for differentiation of with respect ta,

while it may be collisionless along the magnetic figdd. and so forth. Now, seek the solution of the following form
2| ”_ bt Sy 8 31
V. MPF WITH POLOIDAL FLOW W) 2 PR (3Y)

Now we consider cases of MPF with poloidal flow only, Differentiate Eq.(31) with respect taz to obtain
£#0, andI'=0. Some emphasis is put on how to realize
these flows in a laboratory environment using conducting “’_U:§aw+ b+ i_ (32)
electrodes. Assume that the plasma flow is perpendicular to @ 2 20
thg magrletic fieIdU~B=Q. Using the gxisymmetric fqrmu- Using expression$31) and (32) for (w,/w)? and w,,/o,
lation with stream function¢, magnetic flux¥, poloidal  gnq collecting terms with equal power of we find that Eq.

electric current, and plasma rotatiol’, then theU-B=0 (30 corresponds to four ordinary differential equations:
condition reduces t¥ V- V£=0. Since¢ is nonzero, there-

fore =0 (or a constantis a simple solution, which will be (A+ta)éy+ 2ag,=0, (33
studied below. Other solutions withnonzero but constant
for this type of MPF have been obtained previou€iyn the b(&i+1&)=0, (34)
present case, our solutions are more general. c 1| dG(®
A. Equation reduction l? Sl 56 )= dg (39

Ohm’s law(7) under the above assumptions gives and

I ! !
VO +— V=0, (24) dé _ pP, dP; 36
pr p2 Mo dE

which meansb=a® (), andl/pr? = —<Dé. Combining this

new form of Ohm’s law and the equation of motit@), one From Eqgs.(33) and(34), it can be proven that b+ 0, then

we must havet,=0, which is a trivial solution with zero-

obtains ) . .
flow velocity throughout. For nontrivial solutions we con-
U2 |2 Al EVE VD, clude thatb=0. From Eq.(33), the solution for¢ is obtained
V| = +w+ —— =— : (25  as
2 opt? pr? Mo
Therefore, = o 37
U2 12 V4+ta
) TWE ot =G(§), (260 There is an additive integration constant labeling streamlines
0

that can be set to zero. It is also understood from the self-
is a function of¢ only. Therefore, Eq(25) can be written i similar solution assumption thatr?w(z) with an arbitrary
a scalar form: dependence or The velocity field is described by

Al E dG(§)  prid) do;

pr? d¢ mo  dé

(27) U= _—2§3V(r2w)xve. (39
285

The solution to the total energg(¢) is**

B. Solutions
id is i i i c a c a
dengts;;.msqtuh;iglr;dé?)argg:jdcgssl?gompreSS|bIe with constant G(&)= E 8_53 4 ? 2_53§6+ Gy, (39
A"¢ dG(§) pre®; dd; 28 whereG, is a integration constant. The electric potential is
JEINT: no  dE described bf?
Equation (28) can have the so-called self-similar o a2
solutiong”“*3by introducing a new variable q):qjoif d¢ FO_dE 4_5356' (40

t=r‘o, (29 Both &, andF, are integration constants.
where w=w(z) is a function ofz only, and the streamline Three examples of this type of MPF are shown: in Fig.
function is a function ot only, é= £(t)=£(r%w). Substitut- 3, for divergingt=(r/ro)? exp(— Zz), in Fig. 4, for drum-
ing this expression into Eq28), one has shapedt=(r/r,)2 cosh- z/z,), and in Fig. 5, for nozzle

shapedt=(r/rq)? ex —(Zz)?]. These flow configurations

could be realized in a laboratory environment by setting up

d¢ mow d& conducting boundaries, which are both streamlines and equal
(30 potential surfaces at the same time. The conducting electrode

2 dG td; db;
4wt§tt+§ttt2(%) +§tt%zz = L S 4 -

w
%t
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FIG. 3. Cross section of an ideal diverging axisymmetric MPF. Streamlines|G. 5. Cross section of an ideal nozzle-shaped axisymmetric MPF. Con-
are shown with diverging—conducting-electrode boundafiiearked inner  ducting boundaries and streamlines are markee(r/r )2 exd —(2/Zy)?].

and outer electrodet=(r/ry)? exp(— 2Zy). ro, Zo are characteristic di- ro, Zo are characteristic dimensions.

mensions.

tory is essential to studying fundamental MPF physics itself.

boundaries are marked in Figs. 3, 4, and 5. Solutions main order to apply the results to astrophysical phenomena, an
also be used to explain astrophysics flow phenomena. Thessential step is to understand how the dynamo process leads
diverging configuration corresponds to the single-jet caseto the needed electric field and how a dynamo process would
the nozzle configuration corresponds to the double-jet cas@rise. Further efforts such as identifying proper astrophysical
Since electric-field generation is equivalent to the drivingobjects are also expected.
electric current within a plasma, which can be realized
through a dynamo process, the laboratory electrode boundail. SUMMARY
cqnditions could be .replaced by internal dynamo processes The magnetized plasma flow is formulated using steady-
within stgrs or galaxies. ) ) state ideal MHD equations. Exact MPF solutions are ob-

Realization of_these M.PF s_ol_ut|ons n th_e_laboratorytained under various assumptions. When one assumes that
would be of great interest since it is now promising to havey,q yasma fluid is in a equipotential state, the internal elec-
a detailed comparison of the exact theoretical results W'“?ric field E vanishes. Then the MPF is restricted along the
experiments when the cqndltlons prescnb_ed here are m,eﬁ']agnetic fieldUIIB. When a finite electric field is produced
The MPF has the potential to be used widely, such as iy eyternal electrodes at different electric potentials or by

plasma-bgsed electric propulsion and in alternative fusiofyyio na| processes within a star or a galaxy, the flow velocity
conceptd® In addition, generation of the MPF in the labora- U does not need to align with the magnetic field

Based on known solutions to incompressible steady-state

MPF, we discussed the force-free magnetic field MPF with
Steamlines Inner electrode finite pressure gradients, which can be sustained by velocity
gradients. Both incompressible MPF and compressible MPF
examples are given for a Taylor-state spheromak magnetic
structure. In the incompressible case, pressure surfaces are
closed concentric axisymmetric toroids offset from the flux
surface. In the compressible case, the pressure surfaces are
open-ended concentric cylinders.

Magnetized nozzle solutions are obtained with the mag-
netic field relating to the mass density and flow velocity as
B=M\gpU. N\ is a constant proportionality parameter. A very
special case in which the magnetic field is entirely generated
by external currents outside the plasmia; 0, and in which
plasma flow is compressible, is discussed in detail. The tran-
sition from a magnetized nozzle to a magnetic nozzle, i.e.,
fo 0_ - To from one with a material confining boundafynechanical

radius nozzle to one without it, is possible when the magnetic field

FIG. 4. Cross section of an ideal drum-shaped axisymmetric MPF. Conductl-S strong enoth and ShapEd Ina converglng—dlverglng con-

ing boundaries and streamlines are marked(r/r ) cosht- Z1Zy). 1o, Z, Tlguration. This type of magnetic nozzle relieg on the inte_rnal
are characteristic dimensions. energy to accelerate particles to supersonic speed with no

Outer electrode
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